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Exact numerical solutions for dark waves on the discrete nonlinear Schroédinger equation
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In this paper we study numerically existence and stability of exact dark waves ofndhentegrable
discrete nonlinear Schrddinger equation for a finite one-dimensional lattice. These are solutions that bifurcate
from stationary dark modes with constant background intensity and zero intensity at a site, and whose initial
state translates exactly one site each period of the internal oscillations. We show that exact dark waves are
characterized by an oscillatory background whose wavelength is closely related with the velocity. Faster dark
waves require smaller wavelengths. For slow enough velocity dark waves are linearly stable, but when trying
to continue numerically a solution towards higher velocities bifurcations appear, due to rearrangements in the
oscillatory tail in order to make possible a decreasing of the wavelength. However, in principle, one might
control the stability of an exact dark wave adjusting a phase factor which plays the role of a discreteness
parameter. In addition, we also study the regimes of existence and stability for stationary discrete gray modes,
which are exact solutions with phase-twisted constant-amplitude background and nonzero minimum intensity.
Also such solutions develop envelope oscillations on top of the homogeneous background when continued into
moving phase-twisted solutions.
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I. INTRODUCTION On the other hand, it is well knowfi2] that without the

There is a large current interest in effects arising fromP€riodic potentialcontinuum system a defocusing nonlin-

competition between nonlinearity and dispersion in spatiallyf@rity generally leads to the existence of dark solitons, con-
sting of a localized dip in a homogeneous background in-

periodic systems, which in many cases can be well captureg{SU"n9 0! . A .
by simple nonlinear lattice mode[4]. In particular, much tensity [like the dark-soliton solution of the defocusing

recent experimental activity has been devoted to studies dfiteégraple nonlinear SchrodingdLS) equation(13]]. Such
arrays of nonlinear optical waveguidk®, as well as to stud- modes are ubiquitous in nonlinear opt{d2], and also ob-

ies of Bose-Einstein condensatBECS in optical lattices S€rved in BECs with repulsive interatomic interacti@ng.,

[3]. Under certain conditiongotably strong periodic poten- Ref-[14]). When adding a periodic potential, it is possible to
tials and, for BECs, a large number of atoms per ywete generate stationary dlsc_rete dark soht()lm:eather}snolt only
dynamics can in both caséRefs. [4,5], respectively ap- I the standard defocusing case, but also for focugaitigac-
proximately be described by the discrete nonlineariV®) nonlinearity where staggered dark solitons may exist,
SchrodingeXDNLS) model[Eq. (1) below, see, e.g., Refl6 analogously to the staggered bright solitons in the defocusing
for a review of its properties and applicatignds predicted ‘
by the DNLS model, the existence of self-localized discret ; '

Refs.[7,8], respectively. These are particular examples of a - X
( [7.8] pectively. particy xamp tally reported, but theoretically analyzed in REE7].

eneric class of time-periodic, spatially localized modes in k .
g P b y However, as was found first numerically for the DNLS

nonlinear lattices, the so-called “intrinsic localized modes” . . ; .
or “discrete breathers[9]. model in Ref[16] and later confirmed in Refl18], the dis-

An important consequence of the discreten@ssspatial creteness may induce oscillatory instabi_liti_eg for th_e station-
periodicity) in these systems is, that self-localization is pos-ary dark modes. It was fourid8], that for infinite chains the
sible also when the nonlinearity in itself is defocusitg- ~ Strength of these instabilities decay in an exponential-like
pulsive interactions This is a result of the band gap struc- Way approaching the continuum NLS limit, while for finite-
ture of the dispersion relation for linear waves, and thesize systems stabilization due to boundary effects may occur.
anomalous dispersiofor diffraction, in the case of spatial Typically, these instabilities lead to a spontaneous motion of
solitong at the Brillouin zone boundary. In particular, in the the dark mode, together with some radiatidr6,18. It is
DNLS description the attractive and repulsive cases ar¢herefore an interesting question, whether such moving dark
mathematically equivalent through a “staggering” transfor-solitons(breathersmay exist as exact solutions in the DNLS
mation(-1)!, corresponding to reversing the phases in everymodel, and if so, whether they may be stable in regimes
second potential well. Thus, in such a situation discrete soliwhere the stationary dark modes are unstable. Addressing
tons (breathershave exponentially decaying staggered tails,these issues is the main purpose of the present paper.
and have been observed experimentally in optically induced In integrable models, such as the Ablowitz-Ladik discreti-
nonlinear photonic latticefl0], waveguide array$11l], as  zation of the NLS equation, traveling dark solitons exist and
well as BECs in periodic potentia[$]. can be obtained exactly analyticall§9]. The evidence that
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moving dark breathers may exist as exact solutions in a non- 12
integrable lattice was given by Feddersen, who showed nu-

merically [20], for the DNLS as well as for the discrete 1t
Davydov equations, that traveling dark waves bifurcated
from stationary solutions. However, the solutions he found 0.8}
all had a wide envelope and were close to continuum NLS

dark solitons. Attempting a continuation towards narrower - 0.6}
modes, he found that it always stopped at some point, but he
did not analyze this scenario in detail. 04l
On the other hand, much recent attention has been drawr
to the study of mobile discretéright) breathers in general 02l
oscillator chains, and it has been found, numericgly, 22
as well as mathematical[y23], that such solutions may exist 0 , , , , , ,
but typically as nonlocalized solutions with a small- 0 10 20 30 40 50 60

amplitude oscillatory tail. A preliminary calculation of one of )

the present author8.J) [24] showed, that generally also  FiG. 1. Stationary dark breather fa'=7/3, wy=4 and
the tails of numerically exact moving dark DNLS solitons ¢c=1.
did not have a constant amplitude, but exhibited small-
amplitude envelope oscillationith Ref.[25], such solutions
were termed “dark nanopterons’ln addition, it has also
been preliminary reportedi26], that also stationary gray .. '~ -
modes, with nonzero minimum intensity and phase twisteé'ons' Y0 =95(0). . .
background(cf. gray solitons in continuum NLS models Let us assume thay(t) is a solution of the DNLS Ed3)
[12]), may exist in the DNLS model. In this paper, we will 2nd define
provide extensive numerical confirmation of these prelimi- e it
nary results. By performing numerical continuations from ¥ (O) = gty 2
the stationary dark DNLS soliton, we observe the following : RS oo /
main effects of discretenesf) An exact moving discrete By .d.lreCt substitution intd(1) it is easy to check thaylj ®
, I verifies

dark wave generically has envelope oscillations around the
constant-amplitude background afié) gray solitons with o V2 , , , ,
phase-twisted constant-amplitude background exist as sta- 1% + W[ + Cliua+ Y1 = 2¢) + woif =0. (3)
tionary solutions trapped by the lattice potential. As a first step we are going to study stationary dark solu-

It should also be emphasized that, due to the generic nains to(3) of the form
ture of the DNLS equation, similar results should be ex-
pected also for dark breathers in other types of anharmonic W (1) = ¢_ei(2’t (4)
lattice models. Stationary dark breathers have been discussed ' ! '
as well for Klein-Gordon[25,27,28, as for Fermi-Pasta- with time independenip; and '. These solutions corre-
Ulam (FPU) models[29,30, and the validity of the DNLS spond to stationary dark solutions of the DNLS EH. with
approximation for weak coupling and small-amplitude oscil-frequency )=’ - w,. We obtain them numericallyas an
lations explicitly confirmed numerically. example see Fig.)lby continuation of the code..+1,-1,

The outline of this paper is as follows. In Sec. Il we +1 -1 0,+1,-1,+1,-1... at thanticontinuous limitC
introduce the DNLS model, and recapitulate briefly some=0. As it is well known[18], they show a constant back-

properties of its stationary dark modes fr¢a8]. In Sec. llI ground intensity(|¢//j|2—>Q+4C;\j|—>oc), with zero ampli-
we describe our numerical results for existence and stability,de at a lattice site.

of exact traveling dark waves; Sec. Il A discusses the con- |n particular, we are interested in studying the linear sta-
tinuation versus velocity, and Sec. Ill B the continuation ver-pjjity of these solutions versus the peride 27/€)’. Figure
sus internal frequency, which essentially plays the role of shows the moduli of the Floquet eigenvalues for the choice
d|ScreteneSS parameter. SeCt|On |V d|SCUSS€S pI’OpertIes &B:4 For IOW enough Va'ues Of the penojtﬂgh enough
gray solitons with a phase gradient, which may be eithefrequencies, equivalent to anticontinuum lijrtite solutions
stationary or moving. Finally, in Sec. V some concluding are stable, but increasifigabove a critical valud = 0.48 we

generality, we assum€>0. We consider a finite lattic§
=1,2,...N) and adopt, as usual, periodic boundary condi-

remarks are made. observe oscillatory instabilities. These oscillatory instabili-
ties are size dependent and their computation for increasing
Il. STATIONARY DARK MODES system sizes suggests that they decay to zero for large

enoughT for any finite chain, but only asymptotically for
T—cc (continuum limid in the infinite chain. This result is
i+ |20+ Cthioy + by — 206) =0, 1 equwalent to the one observed in REL8] fpr increasing

W+ [950 + Clja* 1= 20) @ coupling[with the used parameter values, Fig. 2 appears as a
where;(t) is the complex amplitude of the oscillator at site rescaling of Fig. 2 in Ref.18], with T« 27C and Moduli of

j on a lattice, andC is a coupling constant. Without loss of Floquet eigenvalues-e?™eM],

Our starting point is théattractive DNLS equation
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FIG. 2. Oscillatory instabilities of the stationary dark breathers o
vs the period for different lattice sizes and parameter vaitres, O_f Commensurablllty, In contrast to the case for general os-
wo=4. cillator chaing21]. Note that for a stationary dark mode, we

must havewy,< (27/T)+4C to have a nonzero background

We remark that. for dir hvsical lications. the f rmintensity, and that continuatiqn @n .the diregtion o.f largey
e remark that, for direct physical applications, the fo (at fixed T and C) towards this limit value is equivalent to

(3) is generally the most relevant form of the DNLS equa- ) : . S e
tion, with oy being the frequency of an uncoupled oscillatorf’ippro"’mhlng the continuum dark-soliton limit, i.e., the “dip

in the small-amplitude limit, an€)’ =27/ T a physical oscil- in the envelope becomes wider.

; ; To obtain numerically an exact traveling dark wave, we
lation frequency. Thus, the frequen€y of a solution to(1) . ; . . . '
normally does not in itself describe a physical oscillationh"’“/e imposed in the Newton iteration the condit{&h and,

frequency but rather a frequency shift relative dg, and as a guess, we have taken the corresponding stationary solu-

therefore() does not need to be sign definite. Evidently, thetiOn and applied a sinusoidal perturbation to its imaginary

ian of a frequency also depends on the sian-convention rt, which plays_a role similar to the vglocity in stationary
iSr:g(Z) and(4()qu yas pends S vention us reathers on Klein-Gordon systems. With this method, for

m=1 andk=-1, we have found exact dark solutions moving
to the left with a phase’ =, which means that

! — / |77 — !

Traveling dark waves were found to appear, together with Yi-o(2T) = ¢j-1(T)e” = Y (0). @)
some radiation, from unstable stationary dark breathers iTherefore the envelope velocity of these dark waves is
numerical simulation$16,18,25,27. Typically these moving =2/2T=1/T, since the lattice spacing is 1. In Fig. 3 we show
dark breathers continuously emit radiation and de@&y the dynamics of an exact dark wave for the c@iset.5. Note
minimum intensity increasgsespecially if the dark mode is that Eq.(7) implies that]| %’—1(T)|2:|l/fj'(0)\2-
narrow. However, analogously to the search for moving In Fig. 4, we show snapshots of dark waves at times when
‘bright’ discrete breatherf21,22, one can search for travel- their envelopes are site centered, which is when their dip
ing dark breathers which afteminternal oscillations, each of intensity is minimal. We observe that the minimum intensity
period T, return to a state identical to its initial state but of these moving solutions is small but nonzero. In that sense,
translated sites. In other words, we can look for solutions to they are “gray” modes rather than “black” modes. Another
(3) that fulfill important property is that the background intensity is not

, , o constant. These waves show a characteristic oscillating tail
¢ (mT) = (0, (5) which seems to be necessary in order to avoid phonon radia-

where o' is some arbitrary phase. The dark solitary wavelion. We can also appreciate that for fix€land wo, the
numerically found in Ref[20] is a special case of such a intensity of the background decreases with the velocity. The

IIl. EXACT DARK WAVES

solution. same behavior is observed for the minimum intensity.

The reason for working with Eq3) instead of Eq(1) is Note that, for a stationary cons.tant—am;()cl)gtud'e traveling
that ¢;(t) =/ ()& o' will be a solution of Eq.(1) fulfiling ~ background wave of the forrtd), with ¢;=¢%¢, to be
the condition¢j(mD=¢j_k(0)e‘“ with a phase compatible with the conditioK7), its amplitude must fulfill

- _ +(2n+1
a=a' —wymT. (6) |pO2= w +2C[1-codQ)]-w, (8)

Thus, for fixed parameter§, T, m, andk, we are able to

investigate the dependence of an exact mobile solution of thior some integemn. For largeT, the family of solutions in
DNLS system on the phase just by computing a solution Fig. 4 approaches the stationary dark mode, corresponding to
to Eqg. (3) of the form(5), and doing the continuation versus a constant-amplitude background witk0 andQ=7. When

wp. In other words, for the DNLS model there are no effectscontinuing these solutions towards smallerthe observed
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FIG. 4. (a) Snapshots of exact moving dark breathers correspondig# T=4.5, andT=6 from top to bottom. Note how the intensity
of the background decreases wheincreases. Other parameters valués:1, wg=4. (b) Re ,(0)] (full circles), Im[,(0)] (open circley,
and|¢,(0)|? (starg for an exact moving solution witi=4.

oscillations develop against a background which still, as il-for T=8.450 in Fig. 6 until the continuation finally stops at
lustrated in Fig. &), approximately can be described 8) 8.468. The signature of these huge changes in the oscillating
with n=0 andQ=. (In the smooth continuation, the aver- tail is an avoided collision at +1 between two conjugated
age phase twist is fixed by using periodic boundary condi+loquet eigenvalues and the appearance of oscillatory insta-
tions in a finite-size systemThus, these dark modes move bilities, as Figs. 7@ and 7b) show, respectively.
through the interaction with the tail envelope oscillations, The following harmonic bifurcations we found in Fig. 5
and not through an average tail phase gradieRt, Q  occur atT,=8.023, T;=6.872, T,=6.234, T;=6.029, T,
#0,m. However, solutions with a phase gradient also exist~=5.034, andT;=4.604. ForT<4.1 more bifurcations ap-
and we will return to this point in Sec. IV. pear atTg=4.091, Tq=4.025,T,,=3.907, andT,;=3.780

One can study the linear stability of these solutions lin-but most of them are not visible because the continuation
earizing the mape;(0) — €,_4(T) around the exact solution path is interrupted immediately after a pair of eigenvalues

;. The linearized equations fa are collide at +1. The structure of all these bifurcations is similar
. o PN to the one described earlier. Figure 8 shows the exact mobile
i€+ 2|y () + (D + Clejur + €21~ 26)) + woe; = 0. solution at the bifurcation points=6.029 (circles, which

(9)  can be continued untif=5.797, and the family of solutions

o . . __ Obtained increasing the continuation step up Te5.6
This linearized map defines an extended Floquet matrix W|tresquare}3 A three-dimensional plot in Fig. 9 shows the con-

properties analogous to the ordinary Floquet matrix for staginyation path of this new solution towards the bifurcation
tionary solutions(cf. Ref.[21]). point Ts. An avoided collision at +1 occurs at 5.67(gee

Fig. 10a)]. After the avoided collision the order of the os-

A. Continuation versus T cillating tail is destroyed. A projection of Fig. 9 on to the

bt . IS
As in the case of stationary dark breathers in finite-size) [#%) plane (see Fig. 11 shows that this is due to the

systems, the mobile solutions are stable for high enough val-
ues of T (slow enough velocitigsif w, is not too small(In

this subsection, we puby=4C, so thatT—o becomes a
continuum limit) If we perform a numerical continuation of
this family of stable solutions towards lower values Df
(higher velocities we find bifurcations as Fig. 5 shows.
These bifurcations are due to harmonic instabiliteegair of
eigenvalues collides at +1 and leaves the unit circle along the
real axig. After emerging the instability the Newton method
stops to converge and the continuation path is interrupted.
However, we can jump into another family of solutions able
to move faster increasing the continuation step. In Fig. 6 we

compare a solution just at the bifurcation poift=8.456 FIG. 5. Instabilities found along a numerical continuation to-
(pluses whose continuation stops at 8.385 with a solution\yards lower values of. Shortly after the harmonic bifurcations the
found increasing the continuation step up to &8&cles.  continuation path stops. At this point we have to jump into another
What happens if we continue the latter solution towards theamily of solutions increasing the continuation step. For 7 we
bifurcation point? We observe a fast growth and rearrangebegin to observe oscillatory instabilities which become stronger.
ments in the oscillatory structure of the tafiee full circles  Other parameter value€=1, wy=4, N=61.
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FIG. 6. Exact mobile dark breathers just at the first bifurcation FIG. 8. Exact mobile dark breathers just at the bifurcafign
T,=8.456 (pluses and for T=8.3 (circles after jumping over the =6.029 (circles and for T=5.6 (squares after jumping over the
bifurcation. The full circles correspond to the continuation of this bifurcation. Other parameter valued=1, wy=4.

last solution towards the bifurcation point. Other parameter values: » )
C=1, wy=4. [31] along a breather-phonobreather transition. In FigblLO

we also show the oscillatory instabilities associated with this
activation of an extended mode with wave number close tgrocess.
7. The phenomenon resembles a lot resonances due to higher Small bubbles of oscillatory instabilities are present in the
harmonics observed in Klein-Gordon lattices, e.g., resosystem forT<<7. They are not visible in Fig. 5 due to the
nances between standing-wave phonons observed in Refcale on ther axis. The size of these bubbles increases as
[25], and the breather-phonon resonance described in Reflecreases, and in fact we can appreciate them clearly in Fig.
5 for T<5.

All the earlier descriptions show that the nature of the
oscillating background changes along the continuation path
towards smallell. Clearly, as the velocity increases the num-
ber of oscillations increases and, therefore, the number of

0.2

0.15¢

(=]
L

0051 ¢

0051 %

S
=

sites per oscillation decreases. For example, in Fig. 6 we
have roughly five oscillations foF=8.3 with about 12 sites
per oscillation. In Fig. 8 we can appreciate six oscillations
with ten sites per oscillation foF=5.6. ForT=4.5 (see Fig.

4) the number of oscillations increases up to seven with ap-

proximately nine sites per oscillation. We again can observe
seven oscillations fof=4 but now with eight sites per os-
cillation (see Fig. 4 aneyv We conclude that the harmonic
bifurcations along the continuation towards smallerare
associated with a qualitative change of tail nature, corre-
sponding either to an increase of the number of oscillations,
a decrease of the number of sites per oscillation, or both.

Angles of Floguet eigenvalues
o

o
-
)]

S
oo

L Iy 0)I?

Moduli of Floquet eigenvalues
4 )
4 b}
[ K

843  B4E 8.1'45 845 847

FIG. 7. (&) When we reverse the continuation path after jumping
over a bifurcation, an avoided collision between a pair of conju-
gated Floquet eigenvalues gives raise to huge changes in the oscil- FIG. 9. Inversion of the continuation path after jumping over the
latory tail of the solutions(b) These rearrangements enclose oscil-fifth bifurcation. When we approach the bifurcation point the
latory instabilities. smooth oscillating tails are destroyed.
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FIG. 12. Spatial oscillation period 2q vs T for small-
amplitude tail oscillations of the forfL.0) fulfilling (7), as obtained
from (11). Solid (dashed lines correspond to a positi@egative
sign in (11), with, from top to bottompn ranging from -1 to =71

f : to 6). As in previous figuresC=1 andwy=4.
’
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satz into(3) and linearizing yields the dispersion relation for
small-amplitude oscillations around the stationary solution
(cf., e.g., Ref. [32]), w?=8Csir?(q/2)[2C sir’(q/2)
+(¢'9)?]. Combining these two conditions thus determines
the possible wave numbegsfor small-amplitude tail oscil-

15
©
¢

Moduli of Floquet eigenvalues

0.8 ‘ - - - ‘ - - - ‘
B85 586 587 . 588 >89 57 lations at givenT, C, wy, as
i isi i i . ) 27— woT
FIG. 1Q. (& An av0|d_ed collision bet_vve_en a pair of conjugated q+2mn+ 4CT|sin q \/S|n2 q + 0l to=0.
Floguet eigenvalues points out the excitation of the extended mode 2 2 2CT

shown in Fig. 11(b) This excitation gives raise to numerous oscil- (11)
latory instabilities.

Wi btai vtical estimate for the d d The variation of the spatial oscillation periodr2g with T
€ can obtain an analytical estimaté for tne dependencg, . g, wg, C, corresponding to the relevant solutions of

of the oscillating tail wave number on the velocity, by con- (12), is illustrated in Fig. 12. As can be seen, the curve cor-

siderir_lg sma_ll-amplitude tail oscillat_ions in the linearized responding to a positive sign amé -1 in (11) agrees quali-
equations. With the ansatz for the tail tatively well with the numerical results reported earlier. Note
(1) = [ @ + uggl@Fet) 4 3y i@+t @i+~ (10)  that this solution corresponds to opposite signs| @d w,

_ and thus a wave traveling to the right, i.e., in the opposite
with Q' =27/T and ¢'%= Q' - wy+4C, condition(7) is ful-  direction to the dark breather itself. Thus, the traveling dark
filled if wT—q=27mn, n integer. Moreover, inserting the an- preather emits backward radiation behind at the same time as

14 . . . . . . it absorbs radiation in front, which makes possible its exis-
tence as an exact solution.

B. Continuation versus wg

For fixed period(fixed velocity we can also continue a
given solution versus the phase parameigrWe find that
the background and the stability of the dark waves are very
sensitive to this parameter,. When w, decreases, the dark
mode narrows and becomes more discrete, and the back-
ground intensity and the oscillation amplitudes increase very
quickly. As an example, a mobile dark breatherTerl2 and
wo=4 (circles in Fig. 13 can be continued untiduy=3.64.
For that value, we can see in Fig. @l circles) that the
oscillations are very large. If we increasg, the dark mode
widens and becomes more continuumlike, and we observe

FIG. 11. Projection of Fig. 9 on to thg, |i;|?) plane. Notice the ~ the opposite effect. Fow,=4.25 (pluses the background
excitation of an extended mode with wave number close.to intensity has already been reduced to its half, and the back-

10 20 30 a0 50 50
i
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FIG. 13. Exact dark waves fof=12 and three different values |G, 15. Instabilities vs the phase, for a fixed value of the
of wg: 4.0 (circles, 3.64 (full circles), and 4.25(pluse$. C=1. period T=5.

ground oscillations are invisible on the scale of the figure
but still present(they are of order 16). This continuation
path ends, for the considered system witl=61, at wq
=4.516(close to the limit valuewy=27/T+4C for the sta-

those discussed in Sec. Il A in the continuation versuest
fixed wy. Generally, since we have two-parametric families
of solutions, each bifurcation should define a bifurcation
tionary mode in the infinite systenwith a background in- curve in the(wo',T) plane[cf., e.g., a S|mllar scenario for'
second-harmonic resonances of standing waves in Klein-

tensity around 0.007. N . .
This result is very interesting for various reasons. On theGordon chains, illustrated in Ref25], Fig. 16a)]. Perform-

one hand, varyingoy one can find stable mobile solutions wg \t\t‘lﬁ ngg?;:ﬁtlﬁiﬁha;sgxggr\/ae:nsdfrggdgfgé:g;fﬁ?rtggilghs
with huge oscillating tails if the velocity is slow enough. An 9 y '

example is the solution shown in Fig. 13 with full circles. Note also that expressicfll) for the linear resonances de-

On the other hand, for a given unstable mobile squtionpend.S not only ofi" but also ony, since the_backg_rou_nd
one can adjust the phasg in order to stabilize it. In Fig. 14 amplitude depends ow,. Thus, the linear spatial oscillation

we show how we can avoid the harmonic instability Tat 2% I'cl):r (;Z?nc%efegl,sr?ar\?lclins\ﬁ)ry;gg)bgteflxeg ((T’ SI Oéh:fsﬁ
=8.4<T, decreasingwo. Another alternative would be to nlurr|1ericall observedalso in tﬁis contiﬁﬂation(ALlother
jump into another stable family of dark mobile solutions in- y

creasing the continuation step fromy=4.013 (where the way of expressing this is, that the_ bifurcation curves in the
continuation path Stopgo wy=4.02 ' (wg, T) plane generally are not horizontal or vertical lines.
0— . .

For higher velocities the scenario becomes more complex
due to the appearance of more and stronger instabilities. Butv. STATIONARY AND MOVING GRAY SOLITONS WITH
again we can find windows of stability managing as Fig. PHASE GRADIENT
15 shows for the cas€=5.

The bifurcations observed in the continuations vereys
at fixed T are essentially the same types of bifurcations a

From a “quasicontinuum” NLS approximation of the
DNLS Eq.(3), taking into account the discrete dispersion for
the background wavey@e @+ but neglecting other ef-
15 . . , . . fects of discreteness, one findib] that the envelope veloc-
ity ¢ and the minimum intensity/,2 for wide, continuum-
like discrete dark solitons should be related by

c=2Csin(Q) = |¢min|- (12

Thus, the minimum intensity determines the envelope veloc-

ity relative to the group velocity of the background wave. It

’ also determines the total phase shift across such a solution

(relative to the background waveas 8=2 arccoffimin/ ¢°).

In particular, the quasicontinuum NLS approximation pre-

dicts the existence of a stationafg=0) gray soliton with

|hminl =2C sin(Q). The condition ¢ <|#®| would thus

limit the existence of such solutions [2C sin(Q)/ ¢®| < 1.
However, as was discussed in RE16], the quasicon-

tinuum NLS approximation does in general not accurately

FIG. 14. Instabilities vs the phase, for a fixed value of the —describe wide small-amplitud@,, close to¢'?] gray soli-
period T=8.4. tons in the discrete system, since it does not take into ac-

_l_._L_L
- SR @ s
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Moduli of Floquet eigenvalues

© © o ©
o N o
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1 T Y\' ] T T T 3.2 T T T T
L (@) | X
0.9 31 (b) ]
0.8+ . 2.8+
07 . 4 26 r
0.6 | 2.4r
=<3 L
= 05F L 22
04l ] & 2 FIG. 16. Stationary discrete
0sl | 1.81 1 gray breather in DNLS, corre-
02l 1.6} 1 sponding to a background wave
' 14} . with Q=0.98x. (a) shows, forC
0.1 . 1ol ] =0.075, ir_]tensit;iz//ﬂz (minimum
0 5 30 30 20 50 1 , ‘ , , . , intensity is |i34%~0.0052; (b)

j 10 20 30 40 50 60 shows nearest-neighbor phase
| shifts aj,1—a; (with notation
=|y;l€*) (note that the total phase

1 ©) ' ' 1 shift across the central sites,
0.8} 1 0.8 (d) . —aqis not 7 as it would be for a
06t 0.6F 1 black breathgr Lower figures
04l 04l with stability eigenvalues show
5 5 that the solution is close to the
e 02r S o2r threshold of Krein instability:C
s of g o 1 =0.075 is stable(c) while C
g o2k g 02k . =0.076 is unstabléd).
—-04 — 04

0.6 06+

0.8 -0.8r. -

i 05 0 05 1 10001 0 0.001
Real part Real part

count effects of higher-order dispersion. Instead, by takingas was discussed in Rdfl6], the family (13) of solutions
into account also third and fourth-order dispersion in thealso exists foiG,/G; <0, leading to “antidark” pulsek.
continuum approximation and performing a multiscale ex- To search numerically for stationary gray solutions as ex-

pansion, 'ft is EOSS”?_'e to der:veda Kortkt‘EW?g-'derIﬂKSII\l/) act solutions to the DNLS Ed3), we impose the boundary
equation for the soliton amplitude in the limit of small am- ;o ditions gy, =62y, b=, and perform a continu-
plitude (see also Re{.33)). The envelope of the correspond- versus'(\g,1 usingNtheOdarI(bI;clo soFI)utions withQ=1
ing family of soliton solutions, parametrized by the small and $9=1 previously obtained18] for C>0 as trial solu-

parametei, can T; vlegtten ap16]: ti%ns in the Newton scheme, with an additional phase torsion
] — 4(0) _ TEMHT52 _ € imposed on the backgrount©Our method is analogous
(0= ¢ G, sech{u(n (Vg + o+ WD), to that used in Ref.35] for Klein-Gordon lattices.To keep
(13) the background intensity to unity, we vary the frequefity
_ as 0=1+2C[cogQ)-1]. An example withQ=0.987 is
where  Vg=2CsinQ),  c¢5=-2A¢?’CcodQ), Gi  shown in Fig. 16. This solution can be continued towards
=4¢%C codQ)[-3+VCo/4C? c0$(Q)], G,=C?cos(Q)[1  largerC, and generally becomes smoother and “grayee’,
+(¢©)2/6C cogQ)]~V,Co/ 3, andW=-2uG,/co. (In Ref.  |y..| increasepasC is increased for fixe®. The scenario
[16] only the casevy=0 was considered, leading to a van- with oscillatory(Krein) instabilities is similar to the scenario
ishing third-order dispersion. However, the third-order dis-for the black soliton$18] as long axQ is close tow. How-
persion present whewi; # 0 only leads to a renormalization ever, some qualitative differences in the continuation sce-
of the coefficients in the KdV equation; see also R8#].)  nario are observed:
Thus, the condition for a stationary small-amplitude gray (i) For eachQ, 7/2<Q< 1, there is a maximum value of
soliton become¥,+c,+W=0. The limit of vanishing soliton  C for existence of a stationary gray mode. To numerical ac-
amplitude u?G,— 0 then gives the limit for existence of a curacy, this maximum value is given bYCal Q)

stationary gray solution ag,=-cy, i.e., it may exist when  =|cogQ)|/2 sirf(Q) as predicted by14), and corresponds to
2C sirZ(Q) the point where /= ¢, and the smooth continuumlike
WO)]ZTS(Q) 1, (14)  gray soliton bifurcates with the plane wave with wave num-

ber Q. Note thatC,,,,is @ monotonously increasing function
which notably agrees with the expression obtained from th@f Q in the interval [7/2,#n], with Cy,(7/2)=0 and
quasicontinuum NLS limit only wheftan(Q)|=1. (Note that, ~ Cpadm) — +°.
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FIG. 17. (a) Continuation of stationary discrete gray soliton )
from continuous limitC=Cp, [from (14)] to anticontinuous limit FIG. 18. (a) Solid line: Location of the bifurcation interrupting a
C=0 at fixed Q=0.6. The smallest minimum intensitiymi®  monotonic continuation at fixe® of a continuumlike gray soliton
=0.9398 is obtained fo€ =0.09. Only the central part of a larger towards the anticontinuous lim@=0. Dashed line: Location of the
chain is shown(b) shows the real part of the stability eigenvalues kyein collision causing oscillatory instability. A stable stationary
during the continuation. The unstable eigenvalues are complex fQgiscrete gray soliton exists only in the area between the [ioegr
C=0.06 and real foC=0.06. right part of the figurg (b) Patterns for the central parts of two
simultaneously existing solutions @=0.957, C=0.13.(+): Solu-

(i) Attempting a continuation towards the anticontinuoustion continued from continuous limit;<): solution continued from
limit C=0 at fixed Q, there are two possible qualitatively anticontinuous limit.
different scenarios depending @n For 7/2<Q= 0.927 the
continuation is monotonic, and ends at the constantfixed Q is not possible due to a bifurcation, associated with a
amplitude phase-twisted solutiof...,e??,e7?,+1,6?,  collision of eigenvalues at=0. The location of this bifurca-
-1,67Q,+1,69,6#Q,...), at C=0, where the “~1" denotes tion line in theQ-C plane is illustrated in Fig. 18). Simi-
the central site. The total phase twist with respect to thdarly, the continuation of the anticontinuous solution dis-
background wave at the anticontinuous limit is thds cussed earlier to large€ is now interrupted by another
=2(2Q~-). The scenario is illustrated in Fig. 17 f@®  bifurcation close toC=0.14 (depends only weakly o).
=0.67. Thus, for eachQ there is an “optimal” value of£  Thus, there is a region in th@-C plane where these two
where the stationary gray soliton contrast is largest. Notesolutions exist simultaneously, but have different properties
also that the instability scenario is different than @« [see Fig. 18&)]. The solution continued from the anticon-
the unstable complex eigenvalues behave similarly close tnuous limit is always unstable, while the solution continued
the continuum limit, but when decreasi@they do not re- from the continuous limit is stable only in the area in the
turn to the imaginary axis but collide with each other on thelower right corner in Fig. 1&), above which the oscillatory
real axis, so that close to the anticontinuous limit there arénstability sets in. Thus, stable stationary discrete gray soli-
two unstable real eigenvalues. Thus, strictly speaking, théons only exist(for the infinite chaif for 0<C=<0.076 and
gray solitons are always unstable for infinite systems f0l0.975<=Q/w=<1.
theseQ. In a similar way as described in Sec. lll, it is possible to

For 0.927< Q= m, a monotonic continuation of the con- find also exact moving gray discrete solitons with an average
tinuumlike gray soliton to the anticontinuous lim=0 at  phase torsiomQ # , by using perturbations of the stationary
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gray solitons discussed in this section as trial solutions. In For fixed velocity, we have also studied the dependence of
general, we find that these solutions have qualitatively simiexact dark waves on the phase factor introduced during the
lar properties as those with a backgrou@Qd 7 wave, i.e., translation, which essentially plays the role of discreteness
typically they develop spatial envelope oscillations on top ofparameter for the dark modes. The stability and the intensity
the homogeneous background when continued away frorof the dark waves are very sensitive to this parameter. In
their continuum limit, with similar bifurcation scenarios as principle, one could control the background and the stability
described in Sec. Ill. of the dark wave if one were able to adjust this phase factor.
We have also investigated stationary gray DNLS solitons,
V. CONCLUSIONS having backgrounds with constant intensity and phase tor-
] ) . ) ) sion and nonzero minimum intensity, and determined re-
In this paper we have investigated numerically existencgjimes for their existence and stability. Similarly as the pre-
and linear stability of exact dark waves on the DNLS equavyjoysly studied black modes, gray modes also suffer
tion, for a finite chain with periodic boundary conditions. osgillatory instabilities persisting close to the continuum
These waves bifurcate from stationary modes with zero infimit, For infinite systems, stable stationary gray solitons
tensity at a site. The initial state of the exact dark waves W&yere found only in a small parameter regime, at small cou-
have found, translate exactly one site each peflicaf the  pjing constanC and background wave numberclose torr.
internal oscillations. They are linearly stable for slow enough
vglocities (Ia_rge T), put when we contir_1u¢ them_ _towar_ds ACKNOWLEDGMENTS
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